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Determining the anchoring strength in a capillary using

topological defects

by RANDALL D. KAMIEN*² and THOMAS R. POWERS³

² Department of Physics and Astronomy, University of Pennsylvania, Philadelphia,
Pennsylvania 19104, U.S.A.

³ Department of Physics, University of Arizona, Tucson, Arizona 85721, U.S.A.

(Received 17 December 1996; in ® nal form 5 February 1997; accepted 14 February 1997 )

We consider a smectic A* phase in a capillary with surface anchoring that favours parallel
alignment. If the bulk phase of the smectic is the standard twist-grain-boundary phase of
chiral smectics, then there will be a critical radius below which the smectic will not have any
topological defects. Above this radius a single screw dislocation in the centre of the capillary
will be favoured. Along with surface anchoring, a magnetic ® eld will also suppress the
formation of a screw dislocation. In this note, we calculate the critical ® eld at which a defect
is energetically preferred as a function of the surface anchoring strength and the capillary
radius. Experiments at a few di� erent radii could thus determine the anchoring strength.

1. Introduction capillary is in® nite in the z direction. We further assume
Boundary conditions play an essential role in liquid there is an in® nite energy cost for the director to have

crystal physics and they cannot be taken with a cavalier a radial component at the surface. The appropriate free
attitude. Even if the boundary is very far away, surface energy to quadratic order is then [6]
e� ects in liquid crystals can be very important because

F=Fbulk+Fsurfaceof typically long-range, algebraic correlations in these
soft materials. Indeed, in device applications one is often

= P dz P
X

d2x GB

2
(V)u +dn)2+

Bz

2
(qzu)2

interested in the surface e� ects on bulk ordering: such
e� ects are a key element in the twisted nematic display
[1].

+
K1

2
(V)¯ dn)2+

K2

2
(V) Ö dn)2

In this note we consider a smectic liquid crystal which,
in bulk, would form a Renn± Lubensky [2] twist-grain-
boundary (TGB) phase [3]. We will show that if this

+
K3

2
(qzdn)2 Õ

x

2
( H ¯n)2Hsmectic is con® ned to the classic capillary geometry

[4, 5] with the layer normals parallel to the capillary
axis then for su� ciently small radii an undefected smectic Õ P dz G P

qX

dl CK2q0dn ¯T
A phase persists while for larger radii screw dislocations
can enter as shown in ® gure 1. While this, in principle,
can give a very clean determination of the anchoring +

K24

2
N ¯[n (V¯n ) Õ (n ¯V )n]Dstrength W it is rather impractical to do an experiment

on a sequence of capillaries with small di� erences
in their radial size. Instead, we show how the imposition Õ P

q+
X

dlCW

2
(n

w
)2DH. (1 )

of a magnetic ® eld also suppresses defect formation. In
this case, at ® xed radii, the applied ® eld may be scanned qV denotes the total boundary of the smectic region,
and the critical ® eld may be determined. Doing this

including any boundaries at defects, while q+V includes
measurement at a few radii should make it possible to

only the boundary with the capillary; N is the (outward
determine W .

pointing) normal to the surface and T is the surface
tangent perpendicular to zÃ . The smectic order parameter2. Results
is y =|y | ei2 p (z+u)/a, and thus the phase of the mass-We start with the free energy of a smectic con® ned
density wave is u. The molecular director is n =to a region V in the xy plane, and assume that the
zÃ ( 1 Õ dn2 )1/2+dn with zÃ ¯dn =0. The K i are the Frank
elastic constants, B and Bz are proportional to the*Author for correspondence.
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214 R. D. Kamien and T. R. Powers

would be an interesting extension of this work to study
the nonlinear theory to understand buckling and its
interplay with defects (cf. [9]).

We write this constraint in cylindrical coordinates as

1

r
q
r

(rdn
r

) +
1

r
q
w
dn

w
=0. (3 )

Using rotational invariance, we can assume that the
nematic ® eld dn is independent of w. In this case (3)
implies that rdn

r
is constant. Since dn must be well

de® ned everywhere, including r=0, the constant must
be 0. Therefore dn =dn

w
(r)wÃ .

To ® nd the minimum energy solution we must take
into account the boundary terms. The outer surface
energy in (1) may be expanded up to quadratic order in
dn :

Fsurface= P dz P
q+ X

dl [dn
w
(R)]2CW

2
Õ

K24

2R D
Õ K2 q0 P dz P

q+ X

dl dn
w
(R) , (4 )

Figure 1. Screw dislocation in a capillary geometry. The dark where R is the capillary radius. We work in the type II
centre line is the screw dislocation.

[6] limit in which the twist penetration depth l0=
(K2 /B)1/2 is much bigger than the coherence length j ; in

smectic order parameter squared |y |2, K24 is the saddle± this limit the contribution of the inner boundary terms
splay elastic constant [7], q0 is the equilibrium choles- turns out to be subleading. We may now calculate the
teric pitch, x is the negative diamagnetic susceptibility, minimum bulk energy for ® xed dn

w
(R) and get an

H =HzÃ is a magnetic ® eld, and W is the anchoring e� ective free energy F (dn
w
(R)) which we may ® nally

strength which we want to determine. In (1) we have minimize over the number dn
w
(R) . At this point we

used the fact that the chiral bulk term K2 q0V) Ö dn can identify the magnetic twist penetration depth
be rewritten as a surface term. While we are not explicitly l2

H =K2 /(B +xH2 ) . We can solve (2) by introducing Q =
interested in the saddle± splay term, there is no way to dn + (l2

H /l2
0 )V)u [1] so that

remove it from the problemÐ when there is a surface it
must be included [8, 5]. It too serves to promote or

V
2
)Q Õ

1

l2
H

Q =0. (5)
hinder the formation of a central screw dislocation.

We note by symmetry along zÃ that the problem can
Note that ( 2 b) implies that u is independent of r andbe reduced to a two-dimensional problem and thus the
thus Q only has components in the wÃ direction. In® elds will have no z dependence. The ® eld con® gurations
cylindrical coordinates (5) reduces to Bessel’s modi® edwhich minimize the bulk free energy satisfy the Euler±
equation with index n=1 and soLagrange equations:

Q
w
(r)=C1K1 (r/lH ) +C2 I1 (r/lH ) . (6 )0=V

2
)u +V)¯ dn and ( 2 a)

0=B (V)u +dn)+xH2dn Õ K1V)V)¯dn We determine C1 by insisting that dn be regular at the
origin. The origin is, in fact, the other boundary. In

Õ K2 (V
2
)dn Õ V)V)¯ dn). ( 2b)

particular, we might consider the possibility that there
is a defect at the centre of the capillary. Recall that aThe saddle± splay term can lead to a buckling instability

toward a con® guration with a non-zero divergence of screw dislocation is a layer con® guration in which u =
amw/( 2p) where a is the layer spacing and m is an integer.dn. In this note we will limit our attention to the e� ect

of the anchoring term on defect formation; in our Note that since u is independent of r, u =amw/(2p) is
the most general solution of the equations of equilibriumquadratic approximation the transverse distortions due

to the defect decouple from the longitudinal distortions with V)¯dn =0. This implies that V)u =wÃ am /(2pr) and
is thus singular at the origin. Since I1 ( 0 ) =0, we have,due to buckling. We will therefore assume V)¯dn =0. It
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215Anchoring strength in a capillary

near r =0 in the range of R ~10 mm. Thus we ® nd a tipping of

rdn
w
( 0 ) +

l2
H

l2
0

am

2p
=C1lH , (7 )

dn0#
K2q0

W

1 Õ
lHma

2pl2
0q0R

1 +
K2

W lH

. (10)
and so C1=amlH /(2pl2

0 ) . Thus the only free parameter
in the bulk free energy is C2 which is determined by
demanding dn

w
(R) ; dn0 : For large R the tipping angle at the capillary wall is

independent of R and m . This is because the director can
C2=

dn0+amlH /(2pl2
0 )[(lH /R ) Õ K1 (R/lH )]

I1 (R/lH )
. (8 ) lower the chiral energy by tipping at the wall even in

the absence of a defect; the director will align with the
layer normal at a distance of a penetration depth fromTaking the core size to be j and working in the regime
the wall. Therefore we must subtract the strain energywhere R &l0 , lH &j we ® nd that the bulk strain energy
of the zero defect state to arrive at the dislocation energyto leading order in lH /R is

FÄ /L #m2GEcore+xH2
a2l2

H

4pl2
0

ln
R

j
+K2

a2l2
H

4pl4
0

ln
lH

j HFbulk (dn0 )/L #m2Ecore+xH2
a2m2l2

H

4pl2
0

ln (R/j)

+m
K2

2 aq0lH

AW +
K2

lHB l2
0

. (11)+K2

a2m2l2
H

4pl4
0

ln
lH

j
+dn2

0 K2p
R

lH

+dn0 K2

lH am

l2
0

, (9 )
We have kept the subleading term K2 /(W lH ) so that
our expressions have sensible large H behaviour, for

where m2Ecore is the energy per unit length of destroying example dn0 � 0, as H � 2, even though in this limit we
the smectic order at the defect core. Note that the strain leave the type II regime. Each term of (11) has a simple
energy depends not only on the boundary value of dn = interpretation: the ® rst three terms are the energy of a
dn0wÃ , but also on the strength of the defect m . When screw dislocation in a bulk sample subject to a magnetic
minimizing, we must minimize over both variables. ® eld, and the last term is the usual chiral term of a bulk
Choosing the minimum over m will indicate whether or defect reduced by a factor involving the anchoring.
not there is a screw dislocation at all. Note that if q0=0 then the minimum energy is at

Adding this energy to the surface energy (4), we
m =0, in other words, no defect. It is easy to see that

minimise over dn0 to ® nd the minimum energy FÄ . To there are critical values of H2, R and q0 for which the
determine the relative magnitudes of the terms, we free energy will be minimized for m Þ 0. First, we consider
estimate K2#K24=O (kBT /j) and a #j. In NMR stud- zero magnetic ® eld. The sign of the Burgers vector is
ies [10] it has been seen that W /K24 # (28 nm) Õ 1 for determined by the sign of q0 ; we assume that q0>0. The
non-chiral nematic liquid crystal in small capillaries in critical value of the chirality needed to get a defect with
Nuclepore; we therefore expect that K24 /R %W for radii

m =Õ 1 in a very large capillary (R � 2 ) is increased
from its bulk value by the anchoring:

q0c#q0c,bulk AW l0

K2
+1B , (12)

where

q0c,bulk =
m

a CEcore

K2
+

a2

4pl2
0

log (l0 /j )D . (13)

In general the critical chirality depends on the radius.
Equivalently, there is a critical radius R c depending on
q0 such that if R <Rc , no defect will occur. Unless q0 is
very close to its critical value, this radius is typically the
size of the penetration depth, in which case our expres-
sions are not valid. We can, of course, compute Rc andFigure 2. Reduced critical ® eld HÂ versus reduced capillary

radius RÂ for WÂ =0 3́0, 0 5́4, 0 9́6, 1 7́ and 3 0́. its dependence on W by dropping the assumption R &l0 ,
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216 Anchoring strength in a capillary

but as noted above Rc is not so easy to determine task would be considerably easier and tremendously
more reliable with some experimental input.experimentally.

Now consider subjecting the sample to a magnetic
® eld. For a capillary with radius R >Rc , there is a It is a pleasure to acknowledge stimulating discussions

with T. C. Lubensky, P. L. Taylor and S. ZÏ umer. Thecritical value Hc (R, W ) of the ® eld above which there
will be no defect; Hc (R, W ) is the number such that the authors acknowledge the hospitality of the Aspen Center

for Theoretical Physics, where some of this work wasright hand side of (11) is zero for m Þ 0. While an
analytic expression for H =Hc is complicated, we can done. RDK was supported by NSF Grants

DMR94-23114 and DMR91-22645, and TRP by NSFeasily plot Hc (R, W ) for a system in which the elastic
constants are known. Thus a given liquid crystal system Grant DMR93-50227.
may be studied in only a few capillaries in order to
determine which value of W ® ts the observed formation References
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